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Abstract

The correct prediction of refrigerant boiling heat transfer performance is important for the design of evaporators. A generalized neu-
ral network correlation for boiling heat transfer coefficient of R22 and its alternative refrigerants R134a, R407C and R410A inside hor-
izontal smooth tubes has been developed in this paper. Four kinds of dimensionless parameter groups from existing generalized
correlations are selected as the input of neural network, while the Nusselt number is used as the output. Three-layer perceptron is
employed as the universal approximator to build the relationship between the input and output parameters. The neuron number of hid-
den layer is determined by the performance of model accuracy and the standard sensitivity analysis. The experimental data of the four
refrigerants in open literatures are used for correlation. The results show that the input parameter group based on the Gungor–Winterton
correlation is better than the other three groups. Compared with the experimental data, the average, mean and root-mean-square devi-
ations of the trained neural network are 2.5%, 13.0% and 20.3%, respectively, and approximately 74% of the deviations are within ±20%,
which is much better than that of the existing generalized correlations.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

CFC (chlorofluorocarbon) and HCFC (hydrochloroflu-
orocarbon) refrigerants cause global warming and ozone
depletion, bring on the environmental problems. So, UN
drew up the Montreal Protocol and its London and Copen-
hagen Amendments [1,2], raising a clear schedule to forbid
the production and usage of CFC and HCFC. According
to the Montreal Protocol, R22 which has been widely used
in air conditioners will be discarded completely in 2020. So
the development of new alternative refrigerants and
prompt shift to new refrigerants are mostly required to pro-
tect the environment. A lot of researches have been done to
find the alternative refrigerants in the past 15 years. Now,
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in air-conditioning field R410A, R407C and R134a are
looked as the alternative refrigerants of R22, which are
applied to different refrigerating system with a gradually
increasing refrigerating capacity, respectively.

The importance of correctly predicting saturated flow
boiling heat transfer coefficients has been well recognized,
as seen from a large number of analytical and experimental
investigations conducted in the past years [3,4]. Knowledge
of these coefficients can reduce the cost and avoid the
drastic results due to under-design or over-design evapora-
tors. There are a large number of saturated flow boiling
correlations available in the literature. The flow boiling
correlation in general can be classified into two categories.
Under the first category, the correlations are developed by
experimental investigators to represent their own data
[5,11,19]. After ascertaining the accuracy of the experi-
ments conducted, these individual correlations can be used
by the user within the same range of parameters. The
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Nomenclature

Bo Boiling number, q/(G Æ ifg)
Co Convection number, ((1 � x)/x)0.8 (qg/ql)

0.5

cp specific heat (J kg�1 K�1)
D tube diameter (m)
Frl Froude number, G2=ðq2

l gDÞ
G mass flow rate (kg m�2 s�1)
g acceleration of gravity (m s�2)
h heat transfer coefficient (W m�2 K�1)
ifg latent heat of vaporization (J/kg)
k thermal conductivity (W m�1 K�1)
M molecular weight
n output neuron
Nu Nusselt number, hD/kl

p pressure (Pa)
Pr Prandtl number, cpl/k
q heat flux (W m�2)
Rel Reynolds number, GD(1 � x)/ll

T temperature (�C)
u weights between input later and hidden layer
w weights between hidden layer and output layer
x quality

Greek symbols

Xtt Martinelli number, ((1� x)/x)0.9(qg/ql)
0.5(ll/lg)

0.1

l dynamic viscosity (N s m�2)
q density (kg m�3)

Subscripts

fg latent heat
g gas
l liquid
line pure line transfer function
log log-sig transfer function
meas measurement
pred predict
r reduced parameter
sat saturated
tan tan-sig transfer function
tp two phase
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correlations under the second category are developed on
the basis of a large number of data sets from different
sources involving different fluids over a wide range of
parameters [6–10]. These correlations are more valuable
since they represent a large data base and cover a much
broader range of operating conditions.

Table 1 gives five important correlations available in the
literature. They are all based on a large number of data
sets, and can represent the coefficients of different fluids
and wide range of operating conditions. They have been
used widely. However, there still exist some insufficiencies.
Firstly, few of correlations involve all the above-mentioned
four refrigerants in their data sets, especially for R410A
and R407C. In addition to the correlations developed
Table 1
Some popular generalized correlations for boiling heat transfer inside smooth

Literature Fluids Correla

Liu and Winterton [6] Water, R12, R22, R11, R113,
R114, ethylene glycol, alcohol

h2
tp ¼ ðF

S ¼ ð1
hCooper

Gungor and Winterton [8] Water, R12, R22, R11, R113,
R114, ethylene glycol, alcohol

htp ¼ F
S ¼

1þ1

Jung and Radermacher [7] R12, R22, R152a, R500, R114 htp ¼ N

hSA ¼ 2

hDittus–B

Kandlikar [9] Water, R11, R12, R22, R113,
R114, R152, nitrogen

htp

hDittus–Boel

hDittus–B

Shah [10] Water, R11, R12, R22, R113,
cyclohexane

htp

hDittus–Boel
early, Choi et al. [11] proposed a correlation based on their
own data involving R22, R134a, and R407C. This correla-
tion shows a good result with their own data, but when
compared to the data from other literatures it cannot give
such good result. Secondly, the correlations reported in the
literature have different function forms, which lack suffi-
cient theoretical supports. When the two-phase flow boil-
ing is considered, such simple correlation function cannot
well reflect the complicated nonlinear relationship between
the variables in a wide range of operating conditions.

Recently, some researchers used the artificial neural net-
works (ANNs) to correlate heat transfer coefficient [12–15],
and got much better results than the traditional approach.
The recent development of powerful learning algorithms
tube

tion

hDittus–BoelterÞ2 þ ðShCooperÞ2; F ¼ 1þ xPrl
ql

qg
� 1

� �h i0:35
;

þ 0:055F 0:1Re0:16
l Þ�1; hDittus–Boelter ¼ 0:023ðkl=DÞRe0:8

l Pr0:4
l ;

¼ 55P 0:12
r q2=3ð�log10P rÞ�0:55M�0:5

hDittus–Boelter þ ShCooper; F ¼ 1þ 24; 000Bo1:16 þ 1:37ð1=X ttÞ0:86;
1

:15�10�6F 2Re1:17
l

; hDittus–Boelter and hCooper are same as above

hSA þ FhDittus–Boelter;N ¼ 4048X 1:22
tt Bo0:13; F ¼ 2:37 0:29þ 1

X tt

� �
;

07 kl

bd
qbd

klT sat

� �0:745 qg

ql

� �
Pr0:533

l ; where, bd ¼ 0:0146b½2r=ðgðql � qvÞÞ�;
oelter is same as above

ter
¼ C1CoC2 ð25FrlÞC5 þ C3BoC4F fl; where, C1–C5 and Ffl are seen in [10],

oelter is same as above

ter
¼ f ðCo;Bo; FrlÞ
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for the ANNs has led to their use in many engineering
applications and the ANN has been an important tool to
describe complicated problems. But all of them aimed at
the special problems and used their own measured result
as data sets, which led to some limitations in application.
Furthermore, most of them directly used physical variables
as the input of the ANNs, which could lead to high dimen-
sionality and low generalization of the ANNs.

In this paper, owing to the good potential of the ANNs
in approximation, the authors employ the ANNs as the
correlation functions instead of the traditional ones to cor-
relate the boiling heat transfer coefficients of R22, R410A,
R407C and R134a flowing inside the horizontal smooth
tubes. In the meantime, for the purpose of reducing the
dimensionality and improving generalization of the ANNs,
the input of ANNs consists of dimensionless parameters
extracted from some existing generalized correlations.
The data sets come from the open literatures [11,16–
26,33] and comprise 1307 data.

2. Application of ANNs to in-tube flow boiling heat transfer

2.1. Basic principle of ANN

A neural network consists of a large number of simple
processing elements called neurons or nodes. Each neuron
is connected to other neurons by means of direct commu-
nication links with associated weights. The weights repre-
sent information being used by the network to solve a
problem [27]. Among the various types of ANNs at pres-
ent, the multilayer perceptron (MLP) has become the most
popular in engineering applications [28,29]. There also are
some other kinds of ANNs, such as radial basis function
(RBF) and generalized regression neural network
(GRNN). Generally, RBF and GRNN need more weights
than MLP to obtain the same accuracy. In fact, we com-
pared RBF, GRNN, and MLP in this case. The compari-
son showed the MLP is better than the other two.
Therefore, for brevity, only MLP is discussed in this paper.

The network is simple in structure and easily analyzed
mathematically. A typical three-layer perceptron is sche-
• • •

hj hJh1

Input layer 

Hidden layer

Output layer 

Bias

yk

x1 xi xI

y1 yK

Fig. 1. Architecture of three-layer perceptron network.
matically illustrated in Fig. 1. This configuration has one
input layer, one hidden layer and one output layer, whose
numbers of neurons are I, J, K, respectively. Each neuron
in input layer makes the weighted summation of all the
neurons in the hidden layer, and then passes this summa-
tion through a transfer function. Next, the neuron in
hidden layer makes the weighted summation of all the
neurons in the output layer, and then passes the summation
through the transfer function, which is the last output.

To describe such relationship of input layer-hidden
layer-output layer in mathematical form is as follows:

hj ¼ g
XI

i¼0

ujixi

 !
ðj ¼ 1; . . . ; JÞ ð1Þ

yk ¼ g
XJ

j¼0

wkjhj

 !
ðk ¼ 1; . . . ;KÞ ð2Þ

where, uji (i > 0) is the associated weight connected by the
ith neuron of input layer to the jth neuron of hidden layer.
uj0 is the bias of the jth neuron of hidden layer. wkj (j > 0) is
the associated weight connected by the jth neuron of hid-
den layer to the kth neuron of output layer. wk0 is the bias
of the kth neuron of output layer.

2.2. ANNs used in this work

2.2.1. Input and output

To train and test the neural networks, input data pat-
terns and corresponding targets were required. The object
of this study is the flow boiling heat transfer, so we select
heat transfer coefficient to be the output. To realize the
universal application, Nusselt number is selected to be
the output of ANNs.

The input of ANNs is based on the characteristic of the
object we studied. Here we select the input based on the
basic function form of five generalized correlations listed
in Table 1. Table 2 lists the different input combination
of ANNs based on different correlations, respectively.

In this study, three kinds of transfer function will be
tried: log-sigmoid, tan-sigmoid, and pure linear, given in
Eqs. (3)–(5).

glogðxÞ ¼ 1=ð1þ e�xÞ ð3Þ

gtanðxÞ ¼ 2=ð1þ e�2xÞ � 1 ð4Þ
glineðxÞ ¼ x ð5Þ

According to the log-sig and tan-sig transfer function de-
fined by Eqs. (3) and (4), the output should be normalized
within the interval (0, 1) and (�1,1), respectively, and pure
line function does not need normalized output. For the
convenience of calculation, we normalize the output within
the interval (0,1) to meet each transfer function’s require-
ments by multiplying a little value constant to the original
output parameter. In this study, the multiplier is 0.001.
When the training completes, the corresponding denormal-
ization should be done in prediction. The reciprocal of the



Table 2
Selection of the ANN input according to the generalized correlations in Table 1

Type Dimensionless input parameters Correlation

I NuDittus–Boelter, NuCooper, 1 + xPrl(ql/qg � 1), Rel Liu–Winterton [6]
II NuDittus–Boelter, NuStephan–Abdelsalam, Bo, Xtt Jung–Radermacher [7]
III NuDittus–Boelter, NuCooper, Bo, Xtt Gungor–Winterton [8]
IV NuDittus–Boelter, Bo, Co, Frl Kandlikar [9] and Shah [10]
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multiplier used in output normalization will be multiplied
to the ANN predicted output to get the real value.

In addition, although the value of the ANN input is
unlimited in terms of log-sig or tan-sig transfer function, if
the absolute value of the input is very large, the output of
hidden neuron will be very close to 0 or 1 and not sensitive
to the input. Therefore, for the purpose of effective training,
the input is also commonly normalized within or around the
interval (0, 1) or (�1,1) in the training step. For the conve-
nience of using the trained ANN without repetitious nor-
malization and denormalization, the input parameters can
be normalized within or around the interval (0,1) by multi-
plying some positive constants. After the training step, the
denormalization can be directly done by multiplying the
weights between the input and hidden layers by those posi-
tive constants used in normalization. As a result, the real
values of input can be straight used for a trained ANN.
For the output, the normalization is also needed.

2.2.2. Number of hidden layer and hidden neurons

The capability of three-layer perceptron network to
approximate any continuous function has been proved
[30,31]. Furthermore, the more number of hidden layers,
the more error transfer steps, which led to the decrease of
the generalization. So this study firstly considers three-
layer perceptron networks (one hidden layer).
Table 3
Data sources in the work

Refrigerant Literature D (mm) G (kg/m2 s)

R22 [16] 6.5 100–400
R22 [17] 7/9.52 70–211
R22 [18] 9.52 224
R22 [11] 9.55 427
R22 [21] 9.52 100–300
R22 [22] 10.7 150–300
R22 [25] 7.7 424–742
R22 [26] 9.52 311
R134a [19] 10.92 300
R134a [20] 6 250
R134a [24] 7.7 424–583
R407C [11] 9.55 427
R407C [16] 9.52 100–300
R407C [20] 6 250
R407C [23] 7 300
R407C [25] 10.7 150–300
R410A [22] 7, 9.52 70–211
R410A [24] 7.7 583
R410A [23] 7 300
R410A [33] 6 363–1098
The number of neurons in the hidden layer has to be
found by balancing the model accuracy and the standard
sensitivity. In the present case, the optimal value is found
to be eight. The details will be given in the next section.

2.2.3. Training and test data

In developing an ANN model, the available data sets is
divided into two parts, one to be used for training of the
network (about 80% of the data), and the rest for testing
the performance [32]. This study employs experimental
data from the open literature, the details listed in Table
3. The total number of data sets is 1307, where 75% or
981 of the data randomly selected for training and the rest
25% data for test.

2.2.4. Training algorithm
In this study, we perform the calculation on the com-

mercial software MATLAB 7.0. For the MLP network
(in MATLAB, also called BP network), there are a dozen
of training algorithms. By comparison, TRAINBR is
found the best training algorithm in this case. Details about
the algorithm can be seen in the help files of MATLAB 7.0.

In addition, there are three conditions at which iteration
will end: (a) Training error reaches the expected value such
as 0.001. (b) Gradient reaches the minimal value. (c) Num-
ber of iteration reaches the set value such as 20,000. ANN
q (kW/m2) Tsat (�C) Number of data

2.5–20 2 40
5–15 �15 to 5 35
10.85 5 4
20.9 �2.9 to 5.9 69
6–14 psat = 0.6 MPa 42
10–30 14.15 238
10–30 12 76
28 27 14
5–20 5 106
10 20 8
30 12 19
20.9 �5.9 to 15.8 104
6–14 psat = 0.6 MPa 36
10 20 8
7.5 psat = 0.545 MPa 4
10–30 9.76 303
5–15 �15 to 5 67
30 12 11
7.5 psat = 0.545 MPa 4
11.6–38.5 �14.9 to 14.3 119



Table 4
Results of different transfer functions in hidden layer and output layer

Output layer Hidden layer

Log-sig Tan-sig Pure line

Model accuracy
RD (%)

Standard
sensitivity RD (%)

Model accuracy
RD (%)

Standard
sensitivity RD (%)

Model accuracy
RD (%)

Standard
sensitivity RD (%)

Log-sig 22.0 4.8 21.8 5.9 35.7 2.0
Tan-sig 21.9 5.4 21.8 7.8 33.0 2.3
Pure line 21.6 10.0 22.9 11.3 33.9 2.2
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model with log-sig and tan-sig transfer function always get
result after hundreds iterations but that with pure line
transfer function always ends up with 20,000 iterations.

2.2.5. Transfer function

There are three kinds of popular transfer functions can
be used in BP network: log-sig, tan-sig, and pure line.
ANN models with hidden and output layer using different
combinations of the three transfer functions are tried. In
the present case, we choose log-sig and log-sig combination
as our model’s hidden and output transfer function by
comparing each model’s accuracy and standard sensitivity.
More details will be given in next section.

3. Results and discussions

3.1. General results

To find a good model, the standard sensitivity analysis is
recommended [34]. We choose 15 sets of data among the
total 1307 test data, give each input of the 15 points 50 dis-
turbances using Gaussian error of r = 5% with zero mean
to see the difference between the ANN predicted result using
Gaussian error input and that using original input. This dif-
ference is called the standard sensitivity. If the root mean
deviation result of the standard sensitivity is around 5%,
it means a good standard sensitivity is reached. Here, we
tried three transfer functions in BP network’s hidden and
output layer: log-sig, tan-sig, and pure line. Table 4 gives
the result based on the input type I. When pure line is used
in both hidden and output layer, ANN model shows a good
standard sensitivity but a poor accuracy and long time was
taken in convergence. If pure line was not used in hidden
layer, ANN models with all three transfer function combi-
nations show a similar accuracy, but those who use pure line
as output transfer function show a poor standard sensitiv-
ity. In addition, ANN models using log-sig or tan-sig trans-
fer functions in the hidden and the output layers show a
Table 5
Comparison of ANN with different type of input

Deviation (%) Type I Type II

Training Test Training Tes

AD 3.1 2.5 4.7 4.9
MD 15.2 14.9 18.3 19.0
RD 21.2 20.9 25.6 26.8
similar accuracy and standard sensitivity, but when using
the model with tan-sig output transfer function, it is not
easy to catch a result with both good accuracy and standard
sensitivity in the calculation process. So in the following cal-
culation, we employed log-sig and log-sig combination as
hidden and output layer transfer function.

To find out the optimal number of hidden neurons, we
also use the standard sensitivity analysis. Fig. 2 gives the
ANN model accuracy and the standard sensitivity analysis
result using combination III. From the figure we can see,
the ANN model accuracy increased with the increased neu-
ron number of hidden layer, but the standard sensitivity
became worse. Balancing the accuracy and the sensitivity,
we recommend the ANN model with 8 hidden neurons as
the optimal model under the combination III. Similar
procedure is repeated to find out the optimal hidden neu-
ron numbers of the ANN models with type I, II, and IV
of inputs, respectively.
Type III Type IV

t Training Test Training Test

2.6 2.0 3.5 3.7
12.9 13.2 17.3 18.5
20.1 21.1 25.8 26.6
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Table 5 shows the comparison of optimized ANN mod-
els with different type of input, where the average deviation
(AD), mean deviation (MD), and root-mean-square of
deviation (RD) are defined as follows:

Average deviation ¼ 1

N

X
N

½ðhpred � hmeasÞ=hmeas� � 100%

ð6Þ

Mean deviation ¼ 1

N

X
N

jðhpred � hmeasÞ=hmeasj � 100%

ð7Þ
Table 6
Original prediction results of existing generalized correlations

Deviation (%) Liu–Winterton [6] Jung–Radermacher [7]

AD 9.4 10.9
MD 23.4 30.4
RD 35.6 42.7

Table 7
Comparison of the best ANN and new correlated correlation result

Deviation (%) Liu–Winterton Jung–Radermacher

AD �4.1 �2.5
MD 22.6 26.7
RD 29.3 36.3

Table 8
Weights of the best ANN with input type III

Hidden neuron Input neuron

1 2 3

0 (bias) – – –
1 �8.23602E+01 1.51230E+03 2.17542E�
2 �3.66600E+02 �4.14810E+02 1.27400E�
3 9.89625E+02 �2.85630E+03 7.27220E�
4 3.06605E+00 1.59765E+03 5.98806E�
5 7.44276E+02 �1.26227E+03 1.85452E�
6 1.76254E+02 2.35500E+03 1.35343E�
7 �4.81182E+03 1.64235E+04 �2.37790E�
8 �4.59420E+02 3.76005E+03 �5.81139E�
Root-mean-square deviation

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
N

½ðhpred � hmeasÞ=hmeas�2
s

� 100% ð8Þ

As shown in Table 5, the ANN with input type III gives
the best result. Fig. 3 shows the percentages of number of
points in every 10% mean deviation range when the
ANN result is compared with the experimental data. The
abscissa gives the average deviation range such as �50%
to �40%, �40% to �30%, �30% to �20%, and so on up
to +40% to +50% errors. The percentages of data points
falling in each of error range are shown as vertical boxes
in each region. Thus it can be seen that approximately
74% of data points fall within ±20%.

Table 6 gives the prediction deviation of some general-
ized correlations on the basis of the present data sets. As
these correlations are developed earlier and their data sets
do not cover all the refrigerants used in this study, these
correlations show a poor accuracy. To make a fair compar-
ison between these correlations and the ANN model, we
recorrelate these correlations on the basis of the present
data sets. Table 7 gives the recorrelated correlations and
the best ANN model prediction results. As we can see,
the ANN model is much better than the other five general-
ized correlations.

Weights of the best ANN are listed in Table 8.
Gungor–Winterton [8] Kandlikar [9] Shah [10]

28.1 4.7 �10.8
33.2 25.5 37.2
47.3 34.7 30.8

Gungor–Winterton Kandlikar ANN

�3.3 �4.4 2.5
24.7 20.8 13.0
32.3 27.01 20.3

Output neuron

4 0 (bias)

– – �4.26580E+01
03 4.97184E�02 �1.82770E+00 2.25870E+01
03 9.38080E+01 1.65590E+00 �2.09120E+00
03 1.35894E+01 5.08190E+00 3.20670E+01
03 9.42880E�01 �4.60720E+00 �2.26440E+01
03 3.36768E+02 1.00390E+00 3.87890E+00
02 2.63658E+00 �1.02300E+01 7.81740E+00
02 6.64672E+00 �1.85120E+01 9.19620E�01
03 �1.33786E+01 �1.51860E+01 3.16840E+01
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3.2. Parameter analysis

To further compare the ANN, other generalized correla-
tions and experimental data, parameter analysis is illus-
trated in Figs. 4–7.

A comparison of boiling heat transfer coefficient versus
quality for the experimental data and six models is pre-
sented in Figs. 4 and 5. The experimental data in Fig. 4
are from Boissieux et al. [26]. The working fluid is R22,
and the working conditions are G = 311 kg/(m2 s),
Tsat = 27 �C, q = 28 kW/m2, D = 9.52 mm. The heat trans-
fer coefficient increases up to a maximum value as the
vapor quality increases to 60–80%, and then drops dramat-
ically characterizing the ‘‘dry-out’’ region. Compared with
other correlations, the ANN model shows a better trend.
The experimental data in Fig. 5 are from Lallemand
et al. [25] for R407C. The working conditions are
G = 300 kg/(m2 s), Tbub = 9.76 �C, Tdew = 15.62 �C, q =
10 kW/m2, D = 10.7 mm. The heat transfer coefficients
versus quality show a relatively flat trend and the ANN
also shows a similar trend. In addition, from the Figs. 4
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Fig. 5. Heat transfer coefficient versus quality: another case.
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Fig. 7. Heat transfer coefficient versus quality under different heat flux.
and 5, it can be seen that the ANN has a good agreement
with the experiment data.

Fig. 6 shows the trend of heat transfer coefficient versus
quality under different mass flux. The experimental data
are from Kim et al. [22] for R410A and the working condi-
tions are Tsat = 5 �C, Tdew = 5.098 �C, q = 5 kW/m2,
D = 8.7 mm. In general, the heat transfer coefficient will
increase with the increase of mass flux. Such a trend is
shown by the experimental data as well as the ANN predic-
tion in Fig. 6.

Fig. 7 shows the trend of heat transfer coefficient versus
quality under different heat flux. The experimental data are
from Wattelet et al. [19] for R134a and the working condi-
tions are G = 300 kg/(m2 s), Tsat = 5 �C, D = 10.92 mm.
According to the experimental data, the heat transfer coef-
ficient increases with the increase of heat flux. The ANN
gives a similar trend.

From the parameter analysis above, it can be seen that
the proposed ANN not only has a good agreement with
experimental data but also shows a correct parametric
trend among the important variables.
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4. Conclusions

In this study, the neural network approach is developed
to predict heat transfer coefficients of R22, R407C, R410A,
and R134a flow boiling inside horizontal smooth tubes.
The input of network is selected from the existing general-
ized correlations and compared with each other to deter-
mine the best. The transfer function and number of
hidden neurons are determined by the performance of
model accuracy and the standard sensitivity analysis. As
a result, a three-layer perceptron of neurons 4-8-1 and
using log-sig and log-sig combination as hidden and output
layer transfer function is finally recommended. Compared
with the experimental data, the average, mean and root-
mean-square deviations of the trained neural network are
2.5%, 13.0% and 20.3%, respectively, and approximately
74% of the deviations are within ±20%, which is much
better than that of the existing generalized correlations.
This study shows that the neural network approach is effec-
tive in the correlation and estimation of heat transfer coef-
ficient and promising as an alternative of the traditional
correlations.
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